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SQL Data Insights
An industry-first relational database with embedded AI capabilities

Infuse NLP  
directly into your 

database on 
existing data to 
discover hidden 

information

Minimizes 
complexity of 
deploying AI 

into your 
applications

Exploits zIIPs
and IBM Z  

acceleration

Single model used 
for a range of 

inferencing task 
over multiple fields

AI



Semantic SQL Functions
Initial set of AI Built-In Functions available in Db2 13 

Cognitive 
Intelligence Query

Functional Description Db2 functions 

semantic similarity 
and dissimilarities

• Matching rows/entities based on overall meaning 
(similarity/dissimilarity)

• Suggest choices for incorrect or missing  entities

AI_SIMILARITY

semantic Clustering • Find entities/rows based on relationships between attributes 
in a given set

• Example: Find animals similar to (lion, tiger, panther)

AI_SEMANTIC_CLUSTER

Reasoning Analogy • Find entities/rows based on relationships between attributes
• Example: Moon : Satellite :: Earth; ? 

AI_ANALOGY



Technology Behind of SQL 
Data Insights 



SQL Data Insights: Core Concepts

Unsupervised Neural Network Approach for Natural Language Processing: Word Embedding
– Captures word meaning as collective contributions of words (tokens) in the neighborhood
– Generates semantic representations of words (tokens) using vectors (Vector Embedding)
– Semantic similarities between words (tokens) measured using distance between vectors

Extending Vector Embedding Approach to structured databases: Database Embedding
– Every database column value, irrespective of its column type, converted to a text token
– View a database record as an unordered English-like sentence (bag-of-words) of text tokens 

• Every token is equally related to other tokens in the “sentence”, irrespective of their position
• Tokens related to unique primary keys and NULL values are treated differently

– Semantic model infers meanings (behavior) of database column values based on their neighboring column values (e.g., 
within a table row, and across table rows)

– Exploit the trained model to enable new SQL semantic queries that operate on the relational data based on the inferred 
meaning, not using values



CustID Date Merchant State Category Items Amount 

CustA 9/16 Store-X NY Fresh produce Bananas 80

CustA 9/16 Store-X NY Fresh produce Apples 120

CustD 9/16 Store-Z NY Stationary Crayons 50

CustD 9/16 Store-Z NY Stationary Folders 150

CustC 10/16 Store-X CT Fresh produce Bananas 100

CustC 10/16 Store-X CT Fresh produce Oranges 100

Relationship Hidden in a Table

– Which customer’s behavior  is more similar to Cust-A’s behavior ?

– What makes you to think so?  



custA is similar to custC due to 
similar purchasing behavior.

CustID Date Merchant State Category Items Amount 
CustA 9/16 Store-X NY Fresh produce Bananas 80
CustA 9/16 Store-X NY Fresh produce Apples 120
CustD 9/16 Store-Z NY Stationary Crayons 50
CustD 9/16 Store-Z NY Stationary Folders 150
CustC 10/16 Store-X CT Fresh produce Bananas 100
CustC 10/16 Store-X CT Fresh produce Oranges 100

Textification : transform values to text token

Txn1  custID_custD Date_9/16   Merchant_ Store-Z    State_NY Category_Stationary Items_Folders Amount_1

Generation of “meaning vector” for every column value  

Relationship Hidden in a Table

cust
C

cust
D

cust
A

• If there is no primary key,   row-ID (Txn1 above)  
will be generated and represent other column 
values in the same row.  

• Meaning vector of the primary key captures the 
meaning of an entire row. 

• Meaning of non-primary key value contributes 
correctively to its neighbors (e.g. NY is 
associated with Bananas and Crayons) 



custA is similar to custC due to 
similar purchasing behavior.

CustID Date Merchant State Category Items Amount 
CustA 9/16 Store-X NY Fresh produce Bananas 80
CustA 9/16 Store-X NY Fresh produce Apples 120
CustD 9/16 Store-Z NY Stationary Crayons 50
CustD 9/16 Store-Z NY Stationary Folders 150
CustC 10/16 Store-X CT Fresh produce Bananas 100
CustC 10/16 Store-X CT Fresh produce Oranges 100

Textification : transform values to text token

Txn1  custID_custD Date_9/16   Merchant_ Store-Z    State_NY Category_Stationary Items_Folders Amount_1

Generation of “meaning vector” for every column value  

Relationship Hidden in a Table

cust
C

cust
D

cust
A

(Withtout Category/Items) 
custA is similar to custD due to 
similar behavior

cust
C

cust
D

cust
A

• If there is no primary key,   row-ID (Txn1 above)  
will be generated and represent other column 
values in the same row.  

• Meaning vector of the primary key captures the 
meaning of an entire row. 

• Meaning of non-primary key value contributes 
correctively to its neighbors (e.g. NY is 
associated with Bananas and Crayons) 



Extract greater value from Db2 for z/OS data

DBA Data
Engineer

Data
Engineer

Data
Scientist

Data
Scientist

App
Developer

VS. 

Traditional AI 
models are complex 
to build and serve a 
single narrow 
purpose

Build Neural Network 
powered relationship 
maps using 
unsupervised training 
over (unlabeled) 
structured data



Semantic AI Functions



AI_SIMILARITY 

SELECT  AI_SIMILARITY(X.customerID,'3668-QPYBK’ USING MODEL 
COLUMN customerID )  AS SimilarityScore, X.*      
FROM CHURN X
WHERE X.customerID <> '3668-QPYBK'
ORDER BY SimilarityScore DESC 
FETCH FIRST 5 ROWS ONLY; 

Find  top 5 customer IDs that are the most similar to a customer “3668-QPYBJ” who closed his account
note : customerID is defined as a primary key 

AI_SIMILARITY('APPLE', 'RASPBERRY' USING MODEL COLUMN FRUIT)

It computes a similarity score using the values returned by expression-1 and expression-2. 
Results of AI_SIMILARITY – floating point number between -1.0 and 1.0  
1.0 means very similar or same,   -1.0 means very dissimilar 

AI_SIMILARITY (expression-1  USING MODEL COLUMN column-name, 
expression-2  USING MODEL COLUMN column-name ) 



AI_SIMILARITY – Dissimilarity Query

SELECT  AI_SIMILARITY(X.customerID,'3668-QPYBK’ USING MODEL 
COLUMN customerID )  AS SimilarityScore, X.*      
FROM CHURN X
WHERE X.customerID <> '3668-QPYBK'
ORDER BY SimilarityScore ASC
FETCH FIRST 5 ROWS ONLY; 

Find  top 5 customer IDs that are the least similar to a customer “3668-QPYBJ” who closed his account
note : customerID is defined as a primary key 



Sponsor User’s Test  

SELECT DISTINCT AI_SIMILARITY(MAKE,'Ferrari’) as SCORE, MAKE

FROM CARS 

WHERE MAKE <> 'Ferrari'

ORDER BY 1 DESC

FETCH FIRST 5 ROWS ONLY

---------+---------+---------+---------+---------+-

Score MAKE

---------+---------+---------+---------+---------+-

+0.7351751327514648E+00 Lamborghini

+0.6999126672744751E+00 Rolls-Royce

+0.6649318337440491E+00 Bentley

+0.6472378969192505E+00 Corvette

+0.6257274746894836E+00 McLaren

https://www.kaggle.com/datasets/ander289386/cars-germany

Find the most similar 5 car manufacturers as Ferrari in the car 
data base



Insurance Use Case

IBM Synthetic Data – Insurance Underwriters  

Insurance company realizes that they are undercharging a 
policy holder and want to find customers since 2015 that 
are similar to him to avoid losses 

SELECT * 
FROM
(SELECT C.*, 
AI_SIMILARITY(DRIVERS_LICENSE_NUMBER, 
'339 713 155’) AS SIMILARITY 
FROM IBM.INSURANCE C)
WHERE 
HEATING_LAST_UPDATE_YEAR>’2015’ 
ORDER BY SIMILARITY 
DESC 
FETCH FIRST 20 ROWS ONLY



AI_SEMANTIC_CLUSTER

SELECT C.*,

AI_SEMANTIC_CLUSTER(C.DRIVERS_LICENSE_NUMBER ,'Q08670943', '543877806', 'T30381936') AS SIMILARITY 
FROM AAMININ.INSURANCE C

WHERE C.DRIVERS_LICENSE_NUMBER NOT IN ('Q08670943', '543877806','T30381936')
ORDER BY SIMILARITY DESC

FETCH FIRST 20 ROWS ONLY

Based on a group of customers who have high valued houses and no recent updates,  find similar customers to increase 
premium

AI_SEMANTIC_CLUSTER('STRAWBERRY' USING MODEL COLUMN FRUIT, 'RASPBERRY', 'BLACKBERRY', 'BLUEBERRY')

computes a clustering score using the values returned by clustering-expressions 
Results of AI_SEMANTIC_CLUSTER  – floating point number between -1.0 and 1.0  
Higher score means a better clustering of member-expression among the clustering-expressions

AI_SEMANTIC_CLUSTER (member-expression  USING MODEL COLUMN column-name, 
clustering-expressions)



AI_ANALOGY :

SELECT DISTINCT 
AI_ANALOGY('Month-to-month' USING MODEL COLUMN CONTRACT,

'Fiber optic' USING MODEL COLUMN INTERNETSERVICE,
'Two year',
INTERNETSERVICE) AS ANALOGY_SCORE,

X.INTERNETSERVICE
FROM CHURN X
WHERE X.INTERNETSERVICE<>’Fiber optic’
ORDER BY ANALOGY_SCORE DESC

Analyze  the relationships between length of contract and internet service subscriptions

AI_ANALOGY('STRAWBERRY' USING MODEL COLUMN FRUIT, 'RED',
'LEMON', 'YELLOW’) 

computes an analogy score using the values returned by the arguments.  Higher the score,  a better analogy than 
a lower score.   
Results of AI_ANALOGY – floating point number,  NOT bounded by -1.0 and 1.0

AI_ANALOGY (source-1, target-1, source-2, target-2)



Insurance Use Case 

IBM Synthetic Data – Insurance Underwriters Use case  

Find risky customers in Oklahoma based on a risky customer found in Kansas

SELECT * FROM 

(SELECT AI_ANALOGY (

‘Kansas’ USING MODEL COLUMN DRIVERS_LICENSE_STATE,

‘Q06-25-5829' USING MODEL COLUMN DRIVERS_LICENSE_NUMBER, 

‘Oklahoma’ USING MODEL COLUMN DRIVERS_LICENSE_STATE, 

DRIVERS_LICENSE_NUMBER) AS ANALOGY_SCORE ,C.*

FROM IBM.INSURANCE C) 

ORDER BY ANALOGY_SCORE DESC 

FETCH FIRST 20 ROWS ONLY ; 



SQL Data Insights -
Potential Use Cases 

Finance (Consumer Banking, Investment Advisors)
• Find customers with similar transactions
• Non-performing Asset Identification (NPA)

Fraud detection
• Anti money laundering
• Account take-over

Insurance 
• Identify similar/dissimilar claims
• Evaluate risk profiles by analyzing patient profiles (e.g., 

symptoms, diagnosis...)

IoT
• Find households/hotel rooms with similar energy 

consumption patterns

Customer analytics
• Find similar customers based on buying patterns
• Customer Churn Analytics 

Advanced sales prediction using external data
• Predict sales of new products to existing customer base

IT incident ticket analysis
• Find accounts with similar ticket patterns 

HR
• Find employees with similar skills and similar/different 

experience

Entity resolution/Data imputation for data quality
• Identify multiple instances of a single customer across 

multiple data sources



Any use case in 
your business?  
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• Business needs – retention program at telecom 
company
• Reduce the customers who leave the service. 

• Data stored in databases
• Customer information,  Service subscription,  Billing 

• Persona – a business analyst
• Data analysis skill (SQL skill) – good
• Data science skill – limited

• Scenario 
• Use AI semantic queries to perform analysis.  

• Identify similar customers who might leave the 
business based on the customer’s record who 
had already left 

• Identify the common pattern among high-risk 
customers

• Identify the set of customers who are not likely 
leaving and understand the pattern 

Customer Retention 
Analysis 

IBM Data and AI on IBMZ / © 2022 IBM Corporation



Using AI Queries (Hint and tips)



SQL Data Insights – Sample Query 1
Based on expenditure transaction data, which 10 vendors are most similar to vendor name 'VERIZON', ranked 
by the similarity score (desc)

SELECT DISTINCT VENDOR_NAME, SIMILARITY_SCORE
FROM                                                               
(                                                                  
SELECT                                                             
VENDOR_NAME,                                                     
AI_SIMILARITY(VENDOR_NAME, 'VERIZON' USING MODEL COLUMN VENDOR_NAME) 

AS SIMILARITY_SCORE
FROM USRT031.VIRG1TB                                               

)                                                                  
WHERE

SIMILARITY_SCORE IS NOT NULL                                           
AND TRIM(VENDOR_NAME) <> 'VERIZON'  

ORDER BY SIMILARITY_SCORE DESC

FETCH FIRST 10 ROWS ONLY

• SQL Data Insights functions are regular 
Db2 scalar functions

• Indexes for underlying model related 
tables automatically created by Db2

• SQL Data Insights functions can return 
NULL 

• Use relative scores (-1 to +1) returned by 
SQL Data Insights functions

• Strings are internally transformed during 
training as well as scoring

• Regular SQL tuning practices apply



SQL Data Insights – Sample Query 2
Based on expenditure transaction data, for the agency 'Treasury Board' (AGY_AGENCY_KEY = 125) and its most 
similar 10 agencies, provide monthly ranking of each agency based on total transaction amount in the month
SELECT                                                                 
YEAR(VOUCHER_DATE) AS YR,                                            
MONTH(VOUCHER_DATE) AS MTH,                                          
SIMILAR.AGY_AGENCY_KEY,                                              
SIMILAR.AGY_AGENCY_NAME,                                             
SUM(AMOUNT) AS TOTAL_AMOUNT,                                         
RANK() OVER (PARTITION BY                                            

YEAR(VOUCHER_DATE),                                           
MONTH(VOUCHER_DATE)                                           
ORDER BY SUM(AMOUNT) DESC                                     

) AS RANKING                                                    
FROM                                                                   
USRT031.VIRG1TB EX,                                                    
(                                                                      
SELECT                                                                 
DISTINCT                                                             
EXP.AGY_AGENCY_KEY,                                                  
AGY.AGY_AGENCY_NAME,                                                 
AI_SIMILARITY(EXP.AGY_AGENCY_KEY, 125 USING MODEL COLUMN EXP.AGY_AGENCY_KEY ) 

AS SIMILARITY_SCORE

FROM USRT031.VIRG1TB EXP                                                
INNER JOIN USRT031.VIRGAGY AGY  ON EXP.AGY_AGENCY_KEY = AGY.AGY_AGENCY_KEY                       

WHERE
AI_SIMILARITY(                                                       

EXP.AGY_AGENCY_KEY, 125 USING MODEL COLUMN EXP.AGY_AGENCY_KEY        
) IS NOT NULL     

ORDER BY 3 DESC                                                         
FETCH FIRST 10 ROWS ONLY                                                
) SIMILAR                                              

WHERE EX.AGY_AGENCY_KEY = SIMILAR.AGY_AGENCY_KEY       

GROUP BY                                                                 
YEAR(VOUCHER_DATE),                                                    
MONTH(VOUCHER_DATE),                                                   
SIMILAR.AGY_AGENCY_KEY,                                                
SIMILAR.AGY_AGENCY_NAME        

ORDER BY YR, MTH, RANKING

• SQL Data Insights functions augment 
existing SQL skills that people already use 
for complex analytical queries 

• Results of SQL Data Insights functions can 
be used to build more advanced SQL based 
analytics

• Views could be used to simplify training 
and scoring based on multiple table joins



SELECT                                                                 
YEAR(VOUCHER_DATE) AS YR,                                            

MONTH(VOUCHER_DATE) AS MTH,                                          

SIMILAR.AGY_AGENCY_KEY,                                              
SIMILAR.AGY_AGENCY_NAME,                                             

SUM(AMOUNT) AS TOTAL_AMOUNT,                                         

RANK() OVER (PARTITION BY                                            
YEAR(VOUCHER_DATE),                                           
MONTH(VOUCHER_DATE)                                           
ORDER BY SUM(AMOUNT) DESC                                     

) AS RANKING                                                    
FROM                                                                   
USRT031.VIRG1TB EX,                                                    
(                                                                      

SELECT                                                                 
DISTINCT                                                             
EXP.AGY_AGENCY_KEY,                                                  
AGY.AGY_AGENCY_NAME,                                                 

AI_SIMILARITY(EXP.AGY_AGENCY_KEY, 125 USING MODEL COLUMN 
EXP.AGY_AGENCY_KEY ) 

AS SIMILARITY_SCORE

FROM USRT031.VIRG1TB EXP                                                
INNER JOIN USRT031.VIRGAGY AGY  ON EXP.AGY_AGENCY_KEY = 

AGY.AGY_AGENCY_KEY                       
WHERE                                                                   

AI_SIMILARITY(                                                       

EXP.AGY_AGENCY_KEY, 125 USING MODEL COLUMN 
EXP.AGY_AGENCY_KEY        

) IS NOT NULL     

ORDER BY 3 DESC                                                         
FETCH FIRST 10 ROWS ONLY                                                

) SIMILAR                                              

WHERE EX.AGY_AGENCY_KEY = SIMILAR.AGY_AGENCY_KEY       

GROUP BY                                                                 

YEAR(VOUCHER_DATE),                                                    
MONTH(VOUCHER_DATE),                                                   
SIMILAR.AGY_AGENCY_KEY,                                                
SIMILAR.AGY_AGENCY_NAME                           

ORDER BY YR, MTH, RANKING



Enabling SQL Data Insights 



SQL Data 
Insights 

UI & Services

DBAData 
Engineer
Domain 
Expert

z/OS USS

Db2 13

Db2 
ApplicationAI Query

zIIP enabled
Input Db2 

table or view

Model table

zIIP enabled 

Application
Dev.

Enable AI

IBM Z H/W optimization

z Deep Neural Network Library

Data Analyst 

8879-zzz -0.141558 -0.346767 -0.453296 
0.052447 0.476916 -0.338483 0.000035 0.517277 
0.191573 0.076891 -0.149729 
1.036879 0.127160 -0.329846 -0.157252……-
0.288485 0.243588 0.038326 -0.338862 0.173571 
….0.231060 0.149021 -0.328546 
-0.058121 -0.341215 0.025713 …

Vector information

AIDB Pseudo 
catalog 

SQL Data Insights – High Level Overview 

Unsupervised neural network 
to generate vectors 

Spark 
services 

z/OS



Steps to Enable AI Queries 

1

Step 1
• Db2 & z/OS 

setup 
• Create pseudo 

catalog,  
procedures 

• Create a IVP 
table 

• Setup z/OS 
libraries 

2

Step 2
• Install & 

configure UI
• UI installation  
• Configure Db2 

connection 
and setup 
training 

3

Step 3
• Enable AI
• Pick columns 

and filtering 
• Trigger training
• Train CHURN 

table  

4

Step 4
• Review the 

training results 
• Model data 

analysis 
(Influence and 
discriminatory 
metrics)

5

Step 5 
• Run AI queries

• Test AI Queries
• Use CHURN 

table



Step-0 : Software and Hardware Requirement 
• Hardware :  zEC12 to z16  
• Function level V13R1M500 above 

• Technical preview available in V12   

• z/OS 2.4 or above with the prerequisite maintenance that installs the following AI libraries 
with the latest APARs : 
• For z/OS 2.5 with APARs OA62901, OA62902, and OA62903
• For z/OS 2.4 with APARs OA62849, OA62886, and OA62887

• IBM Z AI Data Embedding library 
• IBM Z AI Optimization library
• IBM Z Deep Neural Network library

• IBM OpenBLAS PH44479 and PH45672 (z/OS 2.4)  or PH45663 (z/OS 2.5)

• zIIP eligibility for training requires z/OS support 
• z/OS Supervisor APAR OA62728 
• Java 64 bit SDK V8 SR7 FP6 or later



Step 1 : Db2 Preparation

Db2 function 
level 

• V13R1M500 or higher 
• APPLCOMPAT 

V13R1M500 or higher
• JDBC driver for GUI

Db2 preparation 

• SDSNSAMP member 
DSNTIJAI 

• Create SQL Data Insights 
pseudo-catalog (DSNAIDB1) 

• Create DSNAIDB2 for model 
tables 

• Create stored procedures 
• Db2 permissions for GUI users 

Verify Db2 
access to z/OS 

library

• Verify SYS1. SIEALNKE 
and CEE.SCEERUN2 are 
APF authorized

Create sample 
CHURN table 

(IVP) 

• SDSNSAMP member 
DSNTIJAV
• Create sample table DS 

AIDB.CHURN 
• Insert approx. 7000 rows 

Notes : 
• zLOAD (DRDA fast load)  is used to load the vectors to model 

table 
• Ensure DSNUTILU stored procedure is configured 
• Review load utility setup and control statement 

(template) in GUI Settings 
• zLOAD retry utility is available. Contact IBM if you need to 

retry zLOAD without retraining  

Notes : 
• Db2 12 users can use Beta 2.1 

• Use UDF instead of Built-in-function
• Similar sample jobs to create pseudo catalog,  AIDB,  

stored procs. ,  and UDFs 
• WLM application environment definition 
• IVP (DSNTIJAV) 



Why Db2z 13? 
Semantic queries using UDF vs Built-in-Function

• Elapsed time and CPU time : 2 to 7x less with BIF in IBM z16 due to avoiding UDF + System Z H/W Optimization

Technology Preview is available in Db2 12 using UDF 
• Training process is identical as Db2 13 
• Semantic queries do not utilize built-in function nor z/OS optimization   



Step 2: Install UI & Training services and connect to Db2 

Notes 

• Have a z/OS UserID identified as the administrator of SQL Data 
Insights service
• The user ID needs to have a OMVS segment defined
• Recommend to use the provided user profile template

• Prepare a ZFS system (recommend 50 GB)
• For SQLDI configuration files and log files

• Set up a RACF keyring and certificate/private key
• For user authentication and SSL communications

• Reserve a range of network ports (recommend to reserve 21 ports, 
minimum 9 ports)
• For SQL Data Insights service and Spark cluster

• Configure SQL Data Insights Service

• Identify users who can access SQL Data Insights UI service
• Define RACF SQLDIGRP
• Connect the users to SQLDIGRP group



Step 3: Enable AI 



Step 3 : Enable AI - Model training Internal

Step A
Create the 

vector table

Step B
Read data 
from the 

source table

Step C
Text Analysis
and Training

Step D
Load the 

vector table

Partially zIIP eligible Full zIIP eligible

• Runs on z/OS where Db2 SQL Data Insights is installed
• Leverages an imbedded Spark instance
• Interface Db2 through JDBC T4 and stored procedures
• Local or remote loads via zLoad

Model Training Process



Training Performance 
using Freddie Mac Loan Performance Data 
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Performance of Training 

Total Elapsed Time (minutes) CPU Service Time (minutes) Input rows

Details will be published as a part of Db2 13 Performance Topics (redbook) 



Db2 database design
DSNAIDB1
Pseudo-catalog The AIDB 

Pseudo-catalog
Tables

DSNAIDB2
Container for 
Vector Tables

Tablespace
<Db2 generated name>

Table DSNAIDB.
<generated name> Unique IX

DSNAIDB. …

Tablespace
<Db2 generated name>

Table DSNAIDB.
<generated name> Unique IX

DSNAIDB. …

. . .

Two Databases
• One for “catalog”
• One for model tables

Pseudo-catalog
• Metadata tables for model 

tables
• Not for regular 

user access

Model tables
• Created by user via Admin 

UI through Db2 stored 
procedures

• Table space, table, indexes 
are given generated names

• Storage and buffer pool 
attributes inherited from the 
database



Step 4: Analyze Data
• Influence metrics :  influence of a particular column on the training of a model. 

• The influence score for every column is computed as the ratio of NULL and user-specified empty values to the total 
number of values.  The fewer the empty values a column has, the higher its influence score becomes. 

• Discriminatory metrics :  captures the value distribution of each column in the associated table. 
• The discriminatory score measures the ability of a column (the values in a column) to distinguish its co-occurring 

entries in rows.   The more the unique values a column has, the higher its discriminatory score becomes. The 
unique primary key column contains unique values only, and its discriminatory score is the highest.



Step 5: Run Queries
Ready to run AI semantic queries 



Summary and Future 



Summary 

SQL Data Insights offers new ways of looking at existing data stored in 
mainframe.  

Utilize existing mainframe data for in place business analytics without going 
through complex model build process  

Sponsor user program is available for Db2 12 to exploit your data!  



SQL Data Insights Semantic Queries Beyond Db2 13 GA Level   

Cognitive Intelligence 
Query

Functional 
Classification Functional Description Db2 BIF

semantic similarity and 
dissimilarities

Entity Matching
Recommendation

• Matching rows/entities based on overall meaning 
(similarity/dissimilarity)
• Suggest choices for incorrect or missing  entities

AI_SIMILARITY

semantic Clustering Recommendation
• Find entities/rows based on relationships between attributes in a 

given set
• Example: Find animals similar to (lion, tiger, panther)

AI_SEMANTIC_CLUSTER

Reasoning Analogy Recommendation • Find entities/rows based on relationships between attributes
• Example: Newspaper:Press :: Cloth:? AI_ANALOGY

semantic grouping Entity Matching • Collate semantically-related entities AI_GROUPING 

profile queries Identify Hidden 
Relationships

• Given a relational entity of a type, identify entities of other types 
that are semantically related to the relational entity. AI_PROFILE 

predictive queries Prediction over 
unseen data

• Predict values of unknown  attributes
• Predict values of missing/incorrect  attributes AI_PREDICT 



Thank You!   

Akiko@us.ibm.com

mailto:Akiko@us.ibm.com


Please fill out your session evaluation!

2022 EMEA Db2 Tech Conference

Now You See It, Unveil New Insights 
Through SQL Data Insights


