
Now You See It, Unveil New Insights
Through SQL Data Insights

Akiko Hoshikawa

IBM

Platform: Db2 for z/OS

2022 EMEA Db2 Tech Conference

Disclaimer

© IBM Corporation 2022. All Rights Reserved.
The information contained in this publication is provided for informational purposes only. While efforts were made to verify the
completeness and accuracy of the information contained in this publication, it is provided AS IS without warranty of any kind, express
or implied. In addition, this information is based on IBM’s current product plans and strategy, which are subject to change by IBM
without notice. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this publication or any
other materials. Nothing contained in this publication is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement
governing the use of IBM software.
References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which
IBM operates. Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole
discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying that any
activities undertaken by you will result in any specific sales, revenue growth or other results.

Agenda
Introduction of Db2 13 SQL Data Insights

Technology behind of SQL Data Insights

Understanding Semantic AI queries

Using Semantic AI queries

Steps enabling SQL Data Insights

Summary

Q&A

4

SQL Data Insights
An industry-first relational database with embedded AI capabilities

Infuse NLP
directly into your

database on
existing data to
discover hidden

information

Minimizes
complexity of
deploying AI

into your
applications

Exploits zIIPs
and IBM Z

acceleration

Single model used
for a range of

inferencing task
over multiple fields

AI

Semantic SQL Functions
Initial set of AI Built-In Functions available in Db2 13

Cognitive
Intelligence Query

Functional Description Db2 functions

semantic similarity
and dissimilarities

• Matching rows/entities based on overall meaning
(similarity/dissimilarity)

• Suggest choices for incorrect or missing entities

AI_SIMILARITY

semantic Clustering • Find entities/rows based on relationships between attributes
in a given set

• Example: Find animals similar to (lion, tiger, panther)

AI_SEMANTIC_CLUSTER

Reasoning Analogy • Find entities/rows based on relationships between attributes
• Example: Moon : Satellite :: Earth; ?

AI_ANALOGY

Technology Behind of SQL
Data Insights

SQL Data Insights: Core Concepts

Unsupervised Neural Network Approach for Natural Language Processing: Word Embedding
– Captures word meaning as collective contributions of words (tokens) in the neighborhood
– Generates semantic representations of words (tokens) using vectors (Vector Embedding)
– Semantic similarities between words (tokens) measured using distance between vectors

Extending Vector Embedding Approach to structured databases: Database Embedding
– Every database column value, irrespective of its column type, converted to a text token
– View a database record as an unordered English-like sentence (bag-of-words) of text tokens

• Every token is equally related to other tokens in the “sentence”, irrespective of their position
• Tokens related to unique primary keys and NULL values are treated differently

– Semantic model infers meanings (behavior) of database column values based on their neighboring column values (e.g.,
within a table row, and across table rows)

– Exploit the trained model to enable new SQL semantic queries that operate on the relational data based on the inferred
meaning, not using values

CustID Date Merchant State Category Items Amount

CustA 9/16 Store-X NY Fresh produce Bananas 80

CustA 9/16 Store-X NY Fresh produce Apples 120

CustD 9/16 Store-Z NY Stationary Crayons 50

CustD 9/16 Store-Z NY Stationary Folders 150

CustC 10/16 Store-X CT Fresh produce Bananas 100

CustC 10/16 Store-X CT Fresh produce Oranges 100

Relationship Hidden in a Table

– Which customer’s behavior is more similar to Cust-A’s behavior ?

– What makes you to think so?

custA is similar to custC due to
similar purchasing behavior.

CustID Date Merchant State Category Items Amount
CustA 9/16 Store-X NY Fresh produce Bananas 80
CustA 9/16 Store-X NY Fresh produce Apples 120
CustD 9/16 Store-Z NY Stationary Crayons 50
CustD 9/16 Store-Z NY Stationary Folders 150
CustC 10/16 Store-X CT Fresh produce Bananas 100
CustC 10/16 Store-X CT Fresh produce Oranges 100

Textification : transform values to text token

Txn1 custID_custD Date_9/16 Merchant_ Store-Z State_NY Category_Stationary Items_Folders Amount_1

Generation of “meaning vector” for every column value

Relationship Hidden in a Table

cust
C

cust
D

cust
A

• If there is no primary key, row-ID (Txn1 above)
will be generated and represent other column
values in the same row.

• Meaning vector of the primary key captures the
meaning of an entire row.

• Meaning of non-primary key value contributes
correctively to its neighbors (e.g. NY is
associated with Bananas and Crayons)

custA is similar to custC due to
similar purchasing behavior.

CustID Date Merchant State Category Items Amount
CustA 9/16 Store-X NY Fresh produce Bananas 80
CustA 9/16 Store-X NY Fresh produce Apples 120
CustD 9/16 Store-Z NY Stationary Crayons 50
CustD 9/16 Store-Z NY Stationary Folders 150
CustC 10/16 Store-X CT Fresh produce Bananas 100
CustC 10/16 Store-X CT Fresh produce Oranges 100

Textification : transform values to text token

Txn1 custID_custD Date_9/16 Merchant_ Store-Z State_NY Category_Stationary Items_Folders Amount_1

Generation of “meaning vector” for every column value

Relationship Hidden in a Table

cust
C

cust
D

cust
A

(Withtout Category/Items)
custA is similar to custD due to
similar behavior

cust
C

cust
D

cust
A

• If there is no primary key, row-ID (Txn1 above)
will be generated and represent other column
values in the same row.

• Meaning vector of the primary key captures the
meaning of an entire row.

• Meaning of non-primary key value contributes
correctively to its neighbors (e.g. NY is
associated with Bananas and Crayons)

Extract greater value from Db2 for z/OS data

DBA Data
Engineer

Data
Engineer

Data
Scientist

Data
Scientist

App
Developer

VS.

Traditional AI
models are complex
to build and serve a
single narrow
purpose

Build Neural Network
powered relationship
maps using
unsupervised training
over (unlabeled)
structured data

Semantic AI Functions

AI_SIMILARITY

SELECT AI_SIMILARITY(X.customerID,'3668-QPYBK’ USING MODEL
COLUMN customerID) AS SimilarityScore, X.*
FROM CHURN X
WHERE X.customerID <> '3668-QPYBK'
ORDER BY SimilarityScore DESC
FETCH FIRST 5 ROWS ONLY;

Find top 5 customer IDs that are the most similar to a customer “3668-QPYBJ” who closed his account
note : customerID is defined as a primary key

AI_SIMILARITY('APPLE', 'RASPBERRY' USING MODEL COLUMN FRUIT)

It computes a similarity score using the values returned by expression-1 and expression-2.
Results of AI_SIMILARITY – floating point number between -1.0 and 1.0
1.0 means very similar or same, -1.0 means very dissimilar

AI_SIMILARITY (expression-1 USING MODEL COLUMN column-name,
expression-2 USING MODEL COLUMN column-name)

AI_SIMILARITY – Dissimilarity Query

SELECT AI_SIMILARITY(X.customerID,'3668-QPYBK’ USING MODEL
COLUMN customerID) AS SimilarityScore, X.*
FROM CHURN X
WHERE X.customerID <> '3668-QPYBK'
ORDER BY SimilarityScore ASC
FETCH FIRST 5 ROWS ONLY;

Find top 5 customer IDs that are the least similar to a customer “3668-QPYBJ” who closed his account
note : customerID is defined as a primary key

Sponsor User’s Test

SELECT DISTINCT AI_SIMILARITY(MAKE,'Ferrari’) as SCORE, MAKE

FROM CARS

WHERE MAKE <> 'Ferrari'

ORDER BY 1 DESC

FETCH FIRST 5 ROWS ONLY

---------+---------+---------+---------+---------+-

Score MAKE

---------+---------+---------+---------+---------+-

+0.7351751327514648E+00 Lamborghini

+0.6999126672744751E+00 Rolls-Royce

+0.6649318337440491E+00 Bentley

+0.6472378969192505E+00 Corvette

+0.6257274746894836E+00 McLaren

https://www.kaggle.com/datasets/ander289386/cars-germany

Find the most similar 5 car manufacturers as Ferrari in the car
data base

Insurance Use Case

IBM Synthetic Data – Insurance Underwriters

Insurance company realizes that they are undercharging a
policy holder and want to find customers since 2015 that
are similar to him to avoid losses

SELECT *
FROM
(SELECT C.*,
AI_SIMILARITY(DRIVERS_LICENSE_NUMBER,
'339 713 155’) AS SIMILARITY
FROM IBM.INSURANCE C)
WHERE
HEATING_LAST_UPDATE_YEAR>’2015’
ORDER BY SIMILARITY
DESC
FETCH FIRST 20 ROWS ONLY

AI_SEMANTIC_CLUSTER

SELECT C.*,

AI_SEMANTIC_CLUSTER(C.DRIVERS_LICENSE_NUMBER ,'Q08670943', '543877806', 'T30381936') AS SIMILARITY
FROM AAMININ.INSURANCE C

WHERE C.DRIVERS_LICENSE_NUMBER NOT IN ('Q08670943', '543877806','T30381936')
ORDER BY SIMILARITY DESC

FETCH FIRST 20 ROWS ONLY

Based on a group of customers who have high valued houses and no recent updates, find similar customers to increase
premium

AI_SEMANTIC_CLUSTER('STRAWBERRY' USING MODEL COLUMN FRUIT, 'RASPBERRY', 'BLACKBERRY', 'BLUEBERRY')

computes a clustering score using the values returned by clustering-expressions
Results of AI_SEMANTIC_CLUSTER – floating point number between -1.0 and 1.0
Higher score means a better clustering of member-expression among the clustering-expressions

AI_SEMANTIC_CLUSTER (member-expression USING MODEL COLUMN column-name,
clustering-expressions)

AI_ANALOGY :

SELECT DISTINCT
AI_ANALOGY('Month-to-month' USING MODEL COLUMN CONTRACT,

'Fiber optic' USING MODEL COLUMN INTERNETSERVICE,
'Two year',
INTERNETSERVICE) AS ANALOGY_SCORE,

X.INTERNETSERVICE
FROM CHURN X
WHERE X.INTERNETSERVICE<>’Fiber optic’
ORDER BY ANALOGY_SCORE DESC

Analyze the relationships between length of contract and internet service subscriptions

AI_ANALOGY('STRAWBERRY' USING MODEL COLUMN FRUIT, 'RED',
'LEMON', 'YELLOW’)

computes an analogy score using the values returned by the arguments. Higher the score, a better analogy than
a lower score.
Results of AI_ANALOGY – floating point number, NOT bounded by -1.0 and 1.0

AI_ANALOGY (source-1, target-1, source-2, target-2)

Insurance Use Case

IBM Synthetic Data – Insurance Underwriters Use case

Find risky customers in Oklahoma based on a risky customer found in Kansas

SELECT * FROM

(SELECT AI_ANALOGY (

‘Kansas’ USING MODEL COLUMN DRIVERS_LICENSE_STATE,

‘Q06-25-5829' USING MODEL COLUMN DRIVERS_LICENSE_NUMBER,

‘Oklahoma’ USING MODEL COLUMN DRIVERS_LICENSE_STATE,

DRIVERS_LICENSE_NUMBER) AS ANALOGY_SCORE ,C.*

FROM IBM.INSURANCE C)

ORDER BY ANALOGY_SCORE DESC

FETCH FIRST 20 ROWS ONLY ;

SQL Data Insights -
Potential Use Cases

Finance (Consumer Banking, Investment Advisors)
• Find customers with similar transactions
• Non-performing Asset Identification (NPA)

Fraud detection
• Anti money laundering
• Account take-over

Insurance
• Identify similar/dissimilar claims
• Evaluate risk profiles by analyzing patient profiles (e.g.,

symptoms, diagnosis...)

IoT
• Find households/hotel rooms with similar energy

consumption patterns

Customer analytics
• Find similar customers based on buying patterns
• Customer Churn Analytics

Advanced sales prediction using external data
• Predict sales of new products to existing customer base

IT incident ticket analysis
• Find accounts with similar ticket patterns

HR
• Find employees with similar skills and similar/different

experience

Entity resolution/Data imputation for data quality
• Identify multiple instances of a single customer across

multiple data sources

Any use case in
your business?

22

• Business needs – retention program at telecom
company
• Reduce the customers who leave the service.

• Data stored in databases
• Customer information, Service subscription, Billing

• Persona – a business analyst
• Data analysis skill (SQL skill) – good
• Data science skill – limited

• Scenario
• Use AI semantic queries to perform analysis.

• Identify similar customers who might leave the
business based on the customer’s record who
had already left

• Identify the common pattern among high-risk
customers

• Identify the set of customers who are not likely
leaving and understand the pattern

Customer Retention
Analysis

IBM Data and AI on IBMZ / © 2022 IBM Corporation

Using AI Queries (Hint and tips)

SQL Data Insights – Sample Query 1
Based on expenditure transaction data, which 10 vendors are most similar to vendor name 'VERIZON', ranked
by the similarity score (desc)

SELECT DISTINCT VENDOR_NAME, SIMILARITY_SCORE
FROM
(
SELECT
VENDOR_NAME,
AI_SIMILARITY(VENDOR_NAME, 'VERIZON' USING MODEL COLUMN VENDOR_NAME)

AS SIMILARITY_SCORE
FROM USRT031.VIRG1TB

)
WHERE

SIMILARITY_SCORE IS NOT NULL
AND TRIM(VENDOR_NAME) <> 'VERIZON'

ORDER BY SIMILARITY_SCORE DESC

FETCH FIRST 10 ROWS ONLY

• SQL Data Insights functions are regular
Db2 scalar functions

• Indexes for underlying model related
tables automatically created by Db2

• SQL Data Insights functions can return
NULL

• Use relative scores (-1 to +1) returned by
SQL Data Insights functions

• Strings are internally transformed during
training as well as scoring

• Regular SQL tuning practices apply

SQL Data Insights – Sample Query 2
Based on expenditure transaction data, for the agency 'Treasury Board' (AGY_AGENCY_KEY = 125) and its most
similar 10 agencies, provide monthly ranking of each agency based on total transaction amount in the month
SELECT
YEAR(VOUCHER_DATE) AS YR,
MONTH(VOUCHER_DATE) AS MTH,
SIMILAR.AGY_AGENCY_KEY,
SIMILAR.AGY_AGENCY_NAME,
SUM(AMOUNT) AS TOTAL_AMOUNT,
RANK() OVER (PARTITION BY

YEAR(VOUCHER_DATE),
MONTH(VOUCHER_DATE)
ORDER BY SUM(AMOUNT) DESC

) AS RANKING
FROM
USRT031.VIRG1TB EX,
(
SELECT
DISTINCT
EXP.AGY_AGENCY_KEY,
AGY.AGY_AGENCY_NAME,
AI_SIMILARITY(EXP.AGY_AGENCY_KEY, 125 USING MODEL COLUMN EXP.AGY_AGENCY_KEY)

AS SIMILARITY_SCORE

FROM USRT031.VIRG1TB EXP
INNER JOIN USRT031.VIRGAGY AGY ON EXP.AGY_AGENCY_KEY = AGY.AGY_AGENCY_KEY

WHERE
AI_SIMILARITY(

EXP.AGY_AGENCY_KEY, 125 USING MODEL COLUMN EXP.AGY_AGENCY_KEY
) IS NOT NULL

ORDER BY 3 DESC
FETCH FIRST 10 ROWS ONLY
) SIMILAR

WHERE EX.AGY_AGENCY_KEY = SIMILAR.AGY_AGENCY_KEY

GROUP BY
YEAR(VOUCHER_DATE),
MONTH(VOUCHER_DATE),
SIMILAR.AGY_AGENCY_KEY,
SIMILAR.AGY_AGENCY_NAME

ORDER BY YR, MTH, RANKING

• SQL Data Insights functions augment
existing SQL skills that people already use
for complex analytical queries

• Results of SQL Data Insights functions can
be used to build more advanced SQL based
analytics

• Views could be used to simplify training
and scoring based on multiple table joins

SELECT
YEAR(VOUCHER_DATE) AS YR,

MONTH(VOUCHER_DATE) AS MTH,

SIMILAR.AGY_AGENCY_KEY,
SIMILAR.AGY_AGENCY_NAME,

SUM(AMOUNT) AS TOTAL_AMOUNT,

RANK() OVER (PARTITION BY
YEAR(VOUCHER_DATE),
MONTH(VOUCHER_DATE)
ORDER BY SUM(AMOUNT) DESC

) AS RANKING
FROM
USRT031.VIRG1TB EX,
(

SELECT
DISTINCT
EXP.AGY_AGENCY_KEY,
AGY.AGY_AGENCY_NAME,

AI_SIMILARITY(EXP.AGY_AGENCY_KEY, 125 USING MODEL COLUMN
EXP.AGY_AGENCY_KEY)

AS SIMILARITY_SCORE

FROM USRT031.VIRG1TB EXP
INNER JOIN USRT031.VIRGAGY AGY ON EXP.AGY_AGENCY_KEY =

AGY.AGY_AGENCY_KEY
WHERE

AI_SIMILARITY(

EXP.AGY_AGENCY_KEY, 125 USING MODEL COLUMN
EXP.AGY_AGENCY_KEY

) IS NOT NULL

ORDER BY 3 DESC
FETCH FIRST 10 ROWS ONLY

) SIMILAR

WHERE EX.AGY_AGENCY_KEY = SIMILAR.AGY_AGENCY_KEY

GROUP BY

YEAR(VOUCHER_DATE),
MONTH(VOUCHER_DATE),
SIMILAR.AGY_AGENCY_KEY,
SIMILAR.AGY_AGENCY_NAME

ORDER BY YR, MTH, RANKING

Enabling SQL Data Insights

SQL Data
Insights

UI & Services

DBAData
Engineer
Domain
Expert

z/OS USS

Db2 13

Db2
ApplicationAI Query

zIIP enabled
Input Db2

table or view

Model table

zIIP enabled

Application
Dev.

Enable AI

IBM Z H/W optimization

z Deep Neural Network Library

Data Analyst

8879-zzz -0.141558 -0.346767 -0.453296
0.052447 0.476916 -0.338483 0.000035 0.517277
0.191573 0.076891 -0.149729
1.036879 0.127160 -0.329846 -0.157252……-
0.288485 0.243588 0.038326 -0.338862 0.173571
….0.231060 0.149021 -0.328546
-0.058121 -0.341215 0.025713 …

Vector information

AIDB Pseudo
catalog

SQL Data Insights – High Level Overview

Unsupervised neural network
to generate vectors

Spark
services

z/OS

Steps to Enable AI Queries

1

Step 1
• Db2 & z/OS

setup
• Create pseudo

catalog,
procedures

• Create a IVP
table

• Setup z/OS
libraries

2

Step 2
• Install &

configure UI
• UI installation
• Configure Db2

connection
and setup
training

3

Step 3
• Enable AI
• Pick columns

and filtering
• Trigger training
• Train CHURN

table

4

Step 4
• Review the

training results
• Model data

analysis
(Influence and
discriminatory
metrics)

5

Step 5
• Run AI queries

• Test AI Queries
• Use CHURN

table

Step-0 : Software and Hardware Requirement
• Hardware : zEC12 to z16
• Function level V13R1M500 above

• Technical preview available in V12

• z/OS 2.4 or above with the prerequisite maintenance that installs the following AI libraries
with the latest APARs :
• For z/OS 2.5 with APARs OA62901, OA62902, and OA62903
• For z/OS 2.4 with APARs OA62849, OA62886, and OA62887

• IBM Z AI Data Embedding library
• IBM Z AI Optimization library
• IBM Z Deep Neural Network library

• IBM OpenBLAS PH44479 and PH45672 (z/OS 2.4) or PH45663 (z/OS 2.5)

• zIIP eligibility for training requires z/OS support
• z/OS Supervisor APAR OA62728
• Java 64 bit SDK V8 SR7 FP6 or later

Step 1 : Db2 Preparation

Db2 function
level

• V13R1M500 or higher
• APPLCOMPAT

V13R1M500 or higher
• JDBC driver for GUI

Db2 preparation

• SDSNSAMP member
DSNTIJAI

• Create SQL Data Insights
pseudo-catalog (DSNAIDB1)

• Create DSNAIDB2 for model
tables

• Create stored procedures
• Db2 permissions for GUI users

Verify Db2
access to z/OS

library

• Verify SYS1. SIEALNKE
and CEE.SCEERUN2 are
APF authorized

Create sample
CHURN table

(IVP)

• SDSNSAMP member
DSNTIJAV
• Create sample table DS

AIDB.CHURN
• Insert approx. 7000 rows

Notes :
• zLOAD (DRDA fast load) is used to load the vectors to model

table
• Ensure DSNUTILU stored procedure is configured
• Review load utility setup and control statement

(template) in GUI Settings
• zLOAD retry utility is available. Contact IBM if you need to

retry zLOAD without retraining

Notes :
• Db2 12 users can use Beta 2.1

• Use UDF instead of Built-in-function
• Similar sample jobs to create pseudo catalog, AIDB,

stored procs. , and UDFs
• WLM application environment definition
• IVP (DSNTIJAV)

Why Db2z 13?
Semantic queries using UDF vs Built-in-Function

• Elapsed time and CPU time : 2 to 7x less with BIF in IBM z16 due to avoiding UDF + System Z H/W Optimization

Technology Preview is available in Db2 12 using UDF
• Training process is identical as Db2 13
• Semantic queries do not utilize built-in function nor z/OS optimization

Step 2: Install UI & Training services and connect to Db2

Notes

• Have a z/OS UserID identified as the administrator of SQL Data
Insights service
• The user ID needs to have a OMVS segment defined
• Recommend to use the provided user profile template

• Prepare a ZFS system (recommend 50 GB)
• For SQLDI configuration files and log files

• Set up a RACF keyring and certificate/private key
• For user authentication and SSL communications

• Reserve a range of network ports (recommend to reserve 21 ports,
minimum 9 ports)
• For SQL Data Insights service and Spark cluster

• Configure SQL Data Insights Service

• Identify users who can access SQL Data Insights UI service
• Define RACF SQLDIGRP
• Connect the users to SQLDIGRP group

Step 3: Enable AI

Step 3 : Enable AI - Model training Internal

Step A
Create the

vector table

Step B
Read data
from the

source table

Step C
Text Analysis
and Training

Step D
Load the

vector table

Partially zIIP eligible Full zIIP eligible

• Runs on z/OS where Db2 SQL Data Insights is installed
• Leverages an imbedded Spark instance
• Interface Db2 through JDBC T4 and stored procedures
• Local or remote loads via zLoad

Model Training Process

Training Performance
using Freddie Mac Loan Performance Data

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

0

1000

2000

3000

4000

5000

6000

501K 2,107K 4,614K 10,818K 45,892K 101,396K

VIEW_1 VIEW_2 VIEW_3 VIEW_4 VIEW_5 VIEW_6

N
um

be
r o

f i
np

ut
 ro

w
s

m
in

ut
es

Performance of Training

Total Elapsed Time (minutes) CPU Service Time (minutes) Input rows

Details will be published as a part of Db2 13 Performance Topics (redbook)

Db2 database design
DSNAIDB1
Pseudo-catalog The AIDB

Pseudo-catalog
Tables

DSNAIDB2
Container for
Vector Tables

Tablespace
<Db2 generated name>

Table DSNAIDB.
<generated name> Unique IX

DSNAIDB. …

Tablespace
<Db2 generated name>

Table DSNAIDB.
<generated name> Unique IX

DSNAIDB. …

. . .

Two Databases
• One for “catalog”
• One for model tables

Pseudo-catalog
• Metadata tables for model

tables
• Not for regular

user access

Model tables
• Created by user via Admin

UI through Db2 stored
procedures

• Table space, table, indexes
are given generated names

• Storage and buffer pool
attributes inherited from the
database

Step 4: Analyze Data
• Influence metrics : influence of a particular column on the training of a model.

• The influence score for every column is computed as the ratio of NULL and user-specified empty values to the total
number of values. The fewer the empty values a column has, the higher its influence score becomes.

• Discriminatory metrics : captures the value distribution of each column in the associated table.
• The discriminatory score measures the ability of a column (the values in a column) to distinguish its co-occurring

entries in rows. The more the unique values a column has, the higher its discriminatory score becomes. The
unique primary key column contains unique values only, and its discriminatory score is the highest.

Step 5: Run Queries
Ready to run AI semantic queries

Summary and Future

Summary

SQL Data Insights offers new ways of looking at existing data stored in
mainframe.

Utilize existing mainframe data for in place business analytics without going
through complex model build process

Sponsor user program is available for Db2 12 to exploit your data!

SQL Data Insights Semantic Queries Beyond Db2 13 GA Level

Cognitive Intelligence
Query

Functional
Classification Functional Description Db2 BIF

semantic similarity and
dissimilarities

Entity Matching
Recommendation

• Matching rows/entities based on overall meaning
(similarity/dissimilarity)
• Suggest choices for incorrect or missing entities

AI_SIMILARITY

semantic Clustering Recommendation
• Find entities/rows based on relationships between attributes in a

given set
• Example: Find animals similar to (lion, tiger, panther)

AI_SEMANTIC_CLUSTER

Reasoning Analogy Recommendation • Find entities/rows based on relationships between attributes
• Example: Newspaper:Press :: Cloth:? AI_ANALOGY

semantic grouping Entity Matching • Collate semantically-related entities AI_GROUPING

profile queries Identify Hidden
Relationships

• Given a relational entity of a type, identify entities of other types
that are semantically related to the relational entity. AI_PROFILE

predictive queries Prediction over
unseen data

• Predict values of unknown attributes
• Predict values of missing/incorrect attributes AI_PREDICT

Thank You!

Akiko@us.ibm.com

mailto:Akiko@us.ibm.com

Please fill out your session evaluation!

2022 EMEA Db2 Tech Conference

Now You See It, Unveil New Insights
Through SQL Data Insights

